Calibration

ADU-08e

HF Board 08e

The theoretical transfer function for the HF-channel is given below:

\(F_{HF - Channel} = G_{1} \cdot F_{1} \cdot F_{2} \cdot F_{3} \cdot F_{4}\)

with

\(G_{1} = 1 \ or\ 4, 8, 16\) depending on gain setting of first stage

\(F_{1} = \frac{1}{1 + P_{1}}\); \(P_{1} = i \cdot \frac{f}{338 kHz}\)

\(F_{2} = \frac{1}{1 + P_{2}}\); \(P_{2} = i \cdot \frac{f \cdot G_{1} }{100 MHz}\)

\(F_{3} = \frac{1}{1 + P_{3}}\); \(P_{3} = i \cdot \frac{f}{1.59 MHz}\)

\(F_{4} = \frac{P_{4}}{1 + P_{4}}\); \(P_{4} = i\frac{f}{482 Hz}\) if high-pass is switched on.

\(F_{4} = 1\) if high-pass is switched off.

(gains and input divider are calibrated into the LSB, you don’t see them)

LF Board 08e

\(F_{LF - Channel} = G_{1} \cdot G_{2} (\cdot G_{3}) \cdot F_{1} \cdot F_{2} \cdot F_{3} \cdot F_{4}\)

\(G_{1} = 1 \ or\ 4, 8, 16\) depending on gain stage 1 settings

\(G_{2} = 1 \ or\ 4, 8, 16, 32, 64\) depending on gain stage 2 settings, inside the ADC; (32, 64 not set by software, only manually)

Gains and input divider do not appear in the ats file, they are calibrated into the LSB

\(G_{3} = 2\) is a fixed gain and can’t be changed; this gain is invisible in the time series

\(F_{1} = \frac{1}{1 + P_{1}}\); \(P_{1} = i\frac{f}{318 kHz}\)

\(F_{2} = \frac{1}{1 + P_{2}}\); \(P_{2} = i\frac{f \cdot G_1 }{2 MHz}\)

\(F_{3} = \frac{1}{1 + 1.414 \cdot P_{3} + P_{3}^{2}}\); \(P_{3} = i \cdot \frac{f}{4Hz}\) if 4 Hz Low-pass is switched on

and

\(F_{4} = \frac{1}{1 + P_{4}}\); \(P_{4} = i \cdot \frac{f}{10.5 kHz}\) if RF-2 on & DIV-8 = on (default for coil, not used for E)

\(F_{4} = \frac{1}{1 + P_{4}}\); \(P_{4} = i \cdot \frac{f}{30 kHz}\) if RF-1 on & DIV-8 = on (not used for E)

\(F_{4} = \frac{1}{1 + P_{4}}\); \(P_{4} = i \cdot \frac{f}{\frac{0.159}{(R_{sensor} + 200) \cdot 7.27E^{-9}Hz}}\) if RF-2 on & DIV-1 = on (default for electrodes < 1500 Ohm contact resistance, default for buffer electrodes, not used for H) )

\(F_{4} = \frac{1}{1 + P_{4}}\); \(P_{4} = i \cdot \frac{f}{\frac{0.159}{(R_{sensor} + 200) \cdot 470E^{-12}Hz}}\) if RF-1 on & DIV-1 = on ( electrodes > 1500 Ohm contact resistance, not used for H)


ADU-10e

LF Board 10e

\(F_{LF - Channel} = G_{1} \cdot F_{1} \cdot F_{2}\)

\(G_{1} = 1 \ or\ 4, 8, 16, 32, 64\) depending on gain stage 1 settings, here tge gain is inside the ADC like gain 2 for old ADUs

Gains and input divider do not appear in the ats file, they are calibrated into the LSB

\(F_{1} = \frac{1}{1 + P_{1}}\); \(P_{1} = i\frac{f}{318 kHz}\)

and

\(F_{2} = \frac{1}{1 + P_{2}}\); \(P_{2} = i \cdot \frac{f}{7.8 kHz}\) if DIV-8 = on (default for coil, not used for E)

\(F_{2} = \frac{1}{1 + P_{2}}\); \(P_{2} = i \cdot \frac{f}{\frac{0.159}{(R_{sensor} + 200) \cdot 6.8E^{-9}Hz}}\) if DIV-1 = on (default for electrodes < 1500 Ohm contact resistance, default for buffer electrodes, not used for H) )

alt: \(P_{2} = i \cdot 2 \pi f \cdot (R_{sensor} + 200) \cdot 6.8E^{-9}Hz \)


ADU-07e

HF Board 07e

The theoretical transfer function for the HF-channel is given below:

\(F_{HF - Channel} = G_{1} \cdot G_{2} \cdot F_{1} \cdot F_{2} \cdot F_{3}\)

with

\(G_{1} = 1 \ or\ 8\) depending on gain setting of first stage

\(G_{2} = 1 \ or\ 8 \ or\ 64\) depending on gain setting of second stage

\(F_{1} = \frac{1}{1 + P_{1}}\); \(P_{1} = i \cdot \frac{f}{7.7 MHz}\) if \(G_1 \ne 1\)

\(F_{2} = \frac{1}{1 + P_{2}}\); \(P_{2} = i \cdot \frac{f}{7.7 MHz}\) if \(G_2 \ne 1\)

\(F_{3} = \frac{P_{3}}{1 + P_{3}}\); \(P_{4} = i\frac{f}{1 Hz}\) if high-pass is switched on.

(gains and input divider are calibrated into the LSB, you don’t see them)

LF Board 07e

\(F_{LF - Channel} = G_{1} \cdot G_{2} \cdot F_{1} \cdot F_{2} \cdot F_{3}\)

\(G_{1} = 1 \ or\ 2, 4, 8, 16, 32, 64\) depending on gain stage 1 settings

\(G_{2} = 1 \ or\ 2, 4, 8, 16, 32, 64\) depending on gain stage 2 settings, inside the ADC; (32, 64 not set by software, only manually)

\(F_{1} = \frac{1}{1 + P_{1}}\); \(P_{1} = i \cdot \frac{f}{4 kHz}\) if \(G_1 \ne 1\)

\(F_{3} = \frac{1}{1 + 1.414 \cdot P_{3} + P_{3}^{2}}\); \(P_{3} = i \cdot \frac{f}{4Hz}\) if 4 Hz Low-pass is switched on

MF Board 07e

tbd.

MFS Coils

OLD Calibration Files are normalized by f!
e.g. the MFSXXX.txt files.

The JSON files are using mV (as the time series data) and are not normalized by f.
If you normalize the calibration you end up with a constant \(\frac{200 mV}{nT \cdot Hz}\) and 90° phase below 0.1 Hz for the MFS-06e and \(\frac{20 mV}{nT \cdot Hz}\) and 90° fro the MFS-07e.

MFS-06e

\(P_{1} = i \cdot \frac{1}{4 Hz}, \enspace P_{2} = i \cdot \frac{1}{8192 Hz} \enspace\) \(P_{3} = i \cdot \frac{1}{0.72 Hz},\enspace P_{4} = i \cdot \frac{1}{28300 Hz}\)

Chopper on

\(F_{on}(f) = \frac{ mV}{nT} = 800 \enspace \frac{mV}{nT} \cdot \frac{P_1}{1+P_1} \cdot \frac{1}{1+P_2} \cdot \frac{1}{1+P_4} \)

Chopper off

\(F_{off}(f) = \frac{ mV}{nT} = 800 \enspace \frac{mV}{nT} \cdot \frac{P_1}{1+P_1} \cdot \frac{1}{1+P_2} \cdot \frac{P_3}{1+P_3} \cdot \frac{1}{1+P_4} \)

MFS-07e

\(P_{1} = i \cdot \frac{1}{32 Hz}, \enspace P_{2} = i \cdot \frac{1}{40000 Hz} \enspace\) \(P_{3} = i \cdot \frac{1}{0.72 Hz},\enspace P_{4} = i \cdot \frac{1}{50000 Hz}\)

Chopper on

\(F_{on}(f) = \frac{ mV}{nT} = 640 \enspace \frac{mV}{nT} \cdot \frac{P_1}{1+P_1} \cdot \frac{1}{1+P_2} \cdot \frac{1}{1+P_4} \)

Chopper off

\(F_{off}(f) = \frac{ mV}{nT} = 640 \enspace \frac{mV}{nT} \cdot \frac{P_1}{1+P_1} \cdot \frac{1}{1+P_2} \cdot \frac{P_3}{1+P_3} \cdot \frac{1}{1+P_4} \)